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Abstract. The dynamics of the (1+ 1)-dimensional crystalline surface with long-range
interactions is investigated using the renormalization group (RG) technique. The system in
question displays a roughening transition which does not occur for systems with short-range
interactions. The linear macromobility continuously decreases to zero as temperature decreases
to the critical temperature in contrast to the usual two-dimensional roughening transition with
a universal jump in the mobility at the transition point. The nonlinear mobility is also derived
using the RG recursion relations. Two different RG schemes are employed and their differences
are addressed.

1. Introduction

Recently intensive efforts have been made in the study of dynamics of growing interfaces.
The particular attention paid to this problem stems not only from its technological importance
and applications but also from its nontrivial temporal and spatial scaling behaviours. The
processes of surface growth include particle deposition, sedimentation, epitaxial growth,
solidification, etc. Due to the stochastic nature of growth processes, theoretical investigation
of the surface growth can start from a variety of Langevin equations. Among those
approaches nontrivial behaviour of surface growth have been explored [1]. The application
of a numerical technique to this subject is intensive and the results are also fruitful [1].

The profile of a surface develops roughness gradually as stochastically deposited
particles accumulate. To characterize the shape of a steady-state surface on ad-dimensional
substrate, the two-point correlation function is usually introduced as:

S(x, t) = 〈[h(x + x0, t + t0)− h(x0, t0)]
2〉 (1)

whereh(x, t) is the height of a surface withx ∈ Rd and t is time. Scaling invariance of
the equation of motion is manifested in the form of a two-point correlation function:

S(x, t) = x2χf (t/xz). (2)

The roughness exponentχ describes the surface width in the long-time limit with the self-
affine fractal structure and the dynamics exponentz characterizes the spread in time of
disturbance on the surface. At the early stage of growth, the scaling functionf (y) becomes
By2χ/z with B being a constant, while at the saturation stage of growth,f (y) changes into
a constantA. The asymptotic scaling form of the correlation function is given by:

S(x, t → 0)→ Ax2χ (3)

S(x → 0, t)→ Bt2χ/z. (4)
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The height of the crystalline surface is not a continuous variable in the real world. The
discrete nature of a lattice has been shown to play a significant role in both experiments
and numerical simulations. A two-dimensional (2D) crystalline surface undergoes a so-
called roughening transition at some temperature. Such transitions have been observed
experimentally in plastic and metal crystals [2].

The theoretical explanation relies on the discrete Gaussian solid-on-solid (DGSOS)
model [3]. The roughening transition is identified as a Kosterlitz and Thouless (KT)
transition [3]. Two elements in this model are: (i) the surface tension stemming from
the short-range interaction between atoms; and (ii) the periodic potential originating from
the discreteness of a lattice. The nature of the phases of a crystalline surface is effectively
determined by the dominance of one of those two terms. Below the transition temperature,
the periodic potential is strongly relevant. The surface is pinned to the minimum of the
potential and remains flat. Above the transition temperature, the periodic potential is
irrelevant, and the surface is rough. The mobility of a growing surface at the transition
point shows a so-called universal jump [3] in the KT transition.

The dimensional extension of the RG analysis of the 2D DGSOS model indicates that
there still exists a roughening transition in one dimension [4]. However, this is just an
artefact of dimensional extension. The one-dimensional (1D) DGSOS model is exactly
solvable, and it has been shown that there is no phase transition. The latter approach is
consistent with the result in statistical mechanics: one-dimensional systems with only short-
range interactions should not have a phase transition [5]. Nevertheless, in nature there exists
a variety of long-range interactions between atoms or molecules—for example the Van der
Waals force, the effective force due to bulk strain, or long-range interactions in contact lines
[2]. In general such interactions found to scale as a power law with the distances between
atoms. The recent studies by Flament and Gallet (FG) [6] have shown that a possible
long-range electrostatic interaction for a Langmuir crystalline film can lead to a roughening
transition different from the usual 2D case.

The purpose of this paper is to investigate another possible case similar to the case FG:
the crystalline-terraced surface with a special kind of long-range interactions between atoms.
The main focus is to understand both the static and dynamical behaviours of a crystalline
surface with long-range interactions displaying a roughening transition in one dimension
where it is impossible for systems with short-range interactions.

This paper is organized as follows. In section 2 we motivate the study of a terraced
surface with long-ranged interactions between steps. It is described by a 1D solid-on-solid
(SOS) model including long-range interactions. In section 3 we establish a field-theoretic
formulation of the nonlinear Langevin equation. The fluctuation and dissipation theorem
and the derivation of the Martinet al (MSR) [7] action are touched upon. In section 4 we
proceed with a detailed description of the renormalization procedures and the regularization
scheme. Then we analyse the RG recursion relations of various physical parameters, and
show that roughening transitions occur in one dimension. The behaviours of the mobility
in both phases are also explored. In section 5 we adopt another RG scheme developed by
Nozieres and Gallet (NG) [8], and obtain another version of the RG recursion relations.
The differences between NG and the previous schemes are addressed. The implications of
the RG recursion results for the physical quantities are discussed.

In the appendices we present the details of calculations. They include the basic analytical
properties of the free correlation function, and the derivations of renormalization factors,
Zα and Z̃.
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2. Long-range interaction model

As we mentioned in the introduction, the behaviour of the 2D DGSOS model, whose surface
tension arises from the short-range interaction between atoms, is understood. Recently,
effects of long-range interactions on roughening transitions have received much attentions
[6, 9]. Here we study another possible case. In this section we introduce a 2D terraced
surface model with parallel steps interacting with long-range force (the step meander
configurations are neglected) and its effective Hamiltonian is reduced to that of a 1D
interface.

To facilitate the discussion, we first consider the surface energyU of a crystalline surface
as follows

U =
∑
l,m,i,j

alm(ni+l,j+m − ni,j )2 (5)

whereni,j is the height of the crystalline surface at the site(i, j). The form ofalm determines
the interactions between steps. For simplicity, we consider the surface with all steps parallel
to thej -direction. One can derive the relation of the interactionV (n) of two steps with the
separationn and the variablealm [2] as follows

V ′′(n) = 2Nj
∑
m

anm (6)

whereNj is the site number along thej -direction of one step andV ′′(n) is the second
derivative ofV (n) with respect ton. The energy of the surface with steps indexed by [10p]
can also be written as [2]:

U =
∑
lj

ãj (ñl+j − ñj )2 (7)

where ãl = 1
2V
′′(lp), and ñj is the height fluctuation of stepj from its position on the

[10p] surface. Equation (7) shows that the [10p] surface steps can be depicted by a 1D
DGSOS model.

Here we assume a special kind of long-range interaction which causesãl ∼ 1
l2

. It is
straightforward to generalize this model to other long-range interactions. By simply passing
to the continuum limit equation (7) becomes [2, 10, 11]:

H0 = ρ

2T

∫ ∞
−∞

dx
∫ ∞
−∞

dx ′
[
h(x)− h(x ′)
x − x ′

]2

= K

2

∫ ∞
−∞

dp

2π
|p|h(p)h(−p) (8)

whereH0 is rewritten fromU , h(x) is the height of the line at positionx, andρ is the
strength which characterizes the elastic energy due to long-range interactions between atoms.
The temperatureT has been absorbed into the Hamiltonian throughK = 2πρ/T .

A system described byH0 was studied in the context of quantum dissipations [10].
One of its recent applications is the electron system at a point contact of edge states in a
quantum Hall liquid [12, 13].

For a terraced surface, the heighth of every column of steps must be an integer multiple
of the vertical unit spacing of the lattice. This discrete constraint leads to a periodicδ-
function potential onh. The periodic potential here is taken as:

Hp = α

a

∫ ∞
−∞

dx cos[γ h(x)] (9)

whereα/a is the coefficient of the leading term (first harmonics) due to the discreteness,
γ = 2π/b, and a and b are lattice constants parallel and perpendicular to the base line,
respectively. After adding the periodic potential into the Hamiltonian, one can regard
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the height of a surface as a continuous variable within the interval(−∞,∞). As in
the 2D DGSOS model, the higher harmonics are irrelevant near the critical point and
can therefore be neglected in the long wavelength limit. The surface tension energy
Hs = K ′

2

∫
dx [∇h(x)]2 is irrelevant and can be omitted beyond the lengthscaleK ′/K.

3. Equation of surface growth and MSR action

Recently it has been appreciated that the behaviours of surface growths can be revealed by
variant Langevin equations. Most theoretical studies are based on this point of view. In
the same spirit, we consider the dynamics of interface growth as governed by the following
Langevin equation [3, 8, 14, 15]:

∂h(x, t)

∂t
= µF − µδH

δh
+ η(x, t) (10)

whereF is the driving force or the mean rate of deposition,µ is the mobility, andδH
δh

describes the relaxation process of the surface after particle deposition.H is the sum of
H0 andHp. If Hp is irrelevant, equation (10) is reduced to a linear stochastic equation,
where the theory is exactly solvable with the roughness exponentsχ = 0 and the dynamical
exponentz = 1 in one dimension. To mimic the stochastic nature of a surface growth
process,η is introduced as the fluctuation of particle deposition from the mean rate. The
noise is taken to be Gaussian distributed:W [η] ∝ exp{− 1

4µ

∫
dx
∫

dt [η(x, t)]2} with zero
mean and short-ranged spatial and temporal correlations:

〈η(x, t)〉 = 0 and 〈η(x1, t1)η(x2, t2)〉 = 2µδ(x1− x2)δ(t1− t2). (11)

The coefficient 2µ is chosen such that the system will reach the equilibrium states weighted
by the Boltzmann factor e−(H0+Hp). Consequently the fluctuation–dissipation theorem (FDT)
[16] is valid here in contrast to the case of far-from equilibrium surface growth [17],
where equation (10) does not apply. (In general, one cannot find a proper Hamiltonian
H for far-from equilibrium systems such that their equations of motion are deduced from
equation (10).)

This stochastic equation will be analysed systematically by utilizing the MSR [7]
formalism, where one introduces an auxiliary fieldh̃ to force equation (10) through a
functional integral representation of aδ-function.

After averaging overη(x, t), the generating functional for equation (10) takes the form:

Z[J̃ , J ] =
∫
Dh̃Dh exp{S0[h̃, h] + Sint[h̃, h] +

∫
dx dt (J̃ h̃+ Jh)} (12)

where the effective MSR actionSeff(= S0+ Sint) is given by:

S0 =
∫ ∞
−∞

dp

2π

∫ ∞
−∞

dt µh̃(p, t)h̃(−p, t)− h̃(−p, t)
[
∂

∂t
h(p, t)−Kµ|p|h(p)

]
(13)

Sint = −µγα
a

∫ ∞
−∞

dx
∫ ∞
−∞

dt h̃(x, t) sin[γ h(x, t)]. (14)

When the above-mentionedδ-function is implemented, a Jacobian arises from a change
of variables. However, this term can be cancelled by the contribution of diagrams containing
a loop which is formed by a response propagator after the Wick contraction. Therefore the
Jacobian can be neglected as long as one performs the calculation by excluding any diagrams
with a loop from contracting a response propagator. One may calculate averaged correlation
and response functions by differentiating the generating functional with respect to the current
J or auxiliary currentJ̃ and settingJ = J̃ = 0 sinceZ[J = J̃ = 0] = 1 [18, 19]. For
simplicity, we will set the bare value ofK to 1 for further calculations.
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4. RG analysis of MSR action

In this section we follow the standard scheme developed by Amitet al [20] (AGG scheme).
Before the RG analysis, it is beneficial to mention some useful analytic properties of
propagators arising from the action.

The generating functional with only eS0 is determined by two different types of free
propagators—the free response functionR0(x, t) = 〈h(x, t)h̃(0, 0)〉 and the free correlation
functionC0(x, t) = 〈h(x, t)h(0, 0)〉.

To regularize the infrared and ultraviolet divergence of the Feynman integral, we
introduce mass termM for the fieldh(x, t) and the short-distance cut-offa, respectively:

C0(x, t) = 1

2π

∫ ∞
−∞

dp

|p| +M e−λ(|p|+M)|t |eipy

∣∣∣∣
y2=x2+a2

= − 1

π
[Ci(yM) cos(yM)+ Si(yM) sin(yM)] + 1

π

∫ λ|t |

0
du e−Mu

u

y2+ u2

(15)

whereCi(x) = − ∫∞
x

cost
t

dt andSi(x) = − ∫∞
x

sint
t

dt , andy is a positive number.
Next we should establish the relations of the bare and renormalized parameters in terms

of so-called renormalizationZ factors

α = Zααr h2 = Zhh2
r h̃2 = Z−1

h Z̃
2h̃2
r (16)

µ = ZµZhZ̃−1µr M = Z−1
h Mr. (17)

By using the FDT [14, 15], we obtainZµ = 1. TheZ-factors are calculated in terms
of the relations between the bare and renormalized vertex functions. The introduction of
Z-factors is used to render the renormalized theory finite. Therefore the divergences of
bare vertex functions will determine those inZ-factors. The detailed analysis is presented
in appendices C and D. Following the conventional procedures [16, 21], we obtain:

Zα = 1+
(

1− γ 2

2π

)
ln(κa)+O(α3) (18)

Zh = 1 (19)

Z̃ = 1+ α2
r π

2[ln (κa)]. (20)

From the expansion ofα the counter-terms here should be analytic in the momentum space.
Therefore the long-range interaction in equation (8) does not suffer any renormalization,
since this action is proportional to the absolute value of momentum. This fact holds for
all orders of perturbative expansion ofα. A momentum-shell approach due to Fisher and
Zwerger [10] and a real-space calculation due to Kane and Fisher [12, 13] also yields the
same result here.

The associatedβ functions are:

βµ = κ
(
∂µ

∂κ

)
b

= µκ
(
∂ ln Z̃

∂κ

)
b

= π2α2µ (21)

βα = κ
(
∂α

∂κ

)
b

= −ακ
(
∂ lnZα
∂κ

)
b

= α
(
γ 2

2π
− 1

)
. (22)

Using the rescaling factorsx → elx and t → telz (l = ln y wherey is the rescaling
factor), the RG recursion relations of various parameters are given by:

dK

dl
= 0 (23)
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dF

dl
= F (24)

dα

dl
=
(

1− γ 2

2π

)
α +O(α3) (25)

dµ

dl
= (z− 1− (πα)2)µ. (26)

The flow diagram of the parameterα has been obtained by Fisher and Zwerger [10].
Based on the duality property of the density matrix, the flows ofα go to infinity above the
transition point while the dual counterparts (those in the regions below the transition) are
driven to zero [10]. The higher-order calculations forα can be avoided. The flows ofα
above the transition point are implied by equation (25).

The analysis of the RG recursion relations is obvious here. First one integrates out
the recursion equations. Above the transition, as explained above, the coupling constantα

flows to infinity. On a sufficiently large lengthscale, a mass term generated by the relevant
cosine term will dominate over the surface energy strengthK. The interface is pinned at
the minima of the periodic potential, and remains in a flat phase as in (2+ 1)-dimensional
systems. Although there is no infrared fixed point ofα for τ = 1− γ 2

2π > 0, the relation
α(l) = α(0)eτ l whereα(0) is the bare value of the parameterα should hold as long as
l � 1/τ = lD.

Next we turn to the dynamical properties of the interface in both phases. To facilitate the
discussion, we obtain the expression ofµ on the lengthscalel by integrating equations (25)
and (26):

µ(l) = µ(0)e− π2α(o)2

2τ (e2τ l−1). (27)

The linear response mobility (asF → 0) can be obtained by lettingl → ∞ in
equation (27). We find:

µM = µ(0)eπ2α(0)2

2τ for τ < 0 (28)

and

µM = 0 for τ > 0. (29)

Hereµ(0) represents the bare value of the parameterµ. In contrast to the roughening
transition in 2+1 dimensions, the linear response mobility decreases to zero as temperature
approaches the transition point from above.

Therefore there is no so-called universal jump of the mobility for the 1D case. This
particular behaviour compared with the 2D case is due to the non-renormalization of surface
energy strengthK. The higher-order correction will not change this behaviour qualitatively.
In the case where the applied forceF is finite, the movement of an interface is characterized
by the nonlinear response mobility. SinceF is a relevant field, on some sufficiently large
lengthscalel∗ ∼ − lnF , it will grow significantly. The pinning effect due to the periodic
potential will be wiped out by the motion of an interface. Beyond this scale, the effect
of the strengthα, on the average, can be neglected. The mobilityµ will scale normally,
and its canonical dimension is zero. Thus, the nonlinear response mobility is yielded by
stopping the RG iteration at this scale:

µ(l∗ ∼ − lnF) ∼ µ(0) exp

[
− C

τF 2τ

]
whenτ > 0 (30)

where C is a constant whose value depends on the bare values of other parameters.
Meanwhile l∗ should be less thanlD, i.e. − lnF < 1/τ . This kind of nonlinear response
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has been of interest in the study of I–V characteristics of the vortex glass phase of type II
superconductors [22]. Here we see that it can arise even in the pure systems with long-
range interactions. Since in both systems the static Gaussian action does not suffer the
renormalization, they share the common forms of nonlinear response.

In the region far below the transition point, the results presented here in general do
not hold. The role of higher harmonics neglected at the beginning of the RG analysis is
important in this region. However, one can resort to the activated-dynamics mechanism for
systems far below the transition temperature.

5. Nozieres and Gallet scheme

In this section we adopt another RG scheme employed by Nozieres and Gallet (NG) to
investigate the 2D sine-Gordon model. The NG scheme does not require expansion around
the transition point (δ = 0), in contrast to the AGG scheme [20]. However, the NG
scheme adopted the momentum shell scenario, which is notorious for high-order perturbation
calculations.

Let us start with equation (10). In general, the surface heighth(x, t) is a functional
of the given noiseη(x, t) determined by the equation of motion. The dependence of the
heighth on the noiseη is highly nonlinear. It is quite natural to employ the RG method to
handle the fluctuations of nonlinearity.

To perform the RG calculations, one first divides the noiseη into low- and high-
momentum components:

η = η̄(k)+1η(k) (31)

where η̄ associates with the low-momentum part with|k| < 3 and1η with the high-
momentum part with3̄ < |k| < 3. 3̄ is defined as:3̄ = (1 − ε)3, where ε is an
infinitesimal small parameter same as dl in the denominator of equation (23). Here we use
a sharp cut-off3 in the momentum space.

One then integrates out the low-momentum part1η(k), andη comes out with:

h̄ = 〈h[η̄ +1η]〉1η (32)

where the angle bracket represents the average over the high-momentum part. To facilitate
the calculation, we also denote1h = h − h̄. The average of equation (10) over the
high-momentum noise yields:

∂

∂t
h̄(p, t) = −µδH0

δh
+ η̄ + 〈ϒ〉1η (33)

whereϒ = µ∂Hp
∂h

. Subtracting equation (10) from equation (33), one obtains:

∂

∂t
1h(x, t) = −µδH0[1h]

δ(1h)
+1η +ϒ − 〈ϒ〉1η. (34)

Since the momentum shell is infinitesimally small here (3̄→ 3), 1h is also infinitesimally
small, and we can expand〈ϒ〉 as:

〈ϒ〉1η = −γµα sin(γ h̄)

[
1− γ

2

2
〈1h2〉 + · · ·

]
(35)

and

1ϒ = ϒ − 〈ϒ〉1η = −γ 2µα cos(γ h̄)1h+ · · · . (36)
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Solving equation (34), one inherits the expression for1h:

1h(x, t) =
∫ ∞
−∞

dx ′
∫ t

−∞
dt ′ R0(x − x ′, t − t ′)[1ϒ(x ′, t ′)+1η(x ′, t ′)] (37)

whereR0(x − x ′, t − t ′) = 1
π

[ µ|t−t ′|
(µ|t−t ′|)2+(x−x ′)2 ]. By expanding1h(x, t) and1ϒ in orders

of α, one has the leading order of1h contributed only from1η, sinceϒ is at least of the
order ofα as shown in equation (36). To obtain the renormalization ofK and the mobility
µ from the periodic potential strength, one should evaluate〈ϒ〉 in equation (33).

Up to order α2, we have〈1h2〉 = 2〈1h(0)1h(1)〉. By employing the expression
1h(1)(x, t) = ∫∞

−∞ dx ′
∫ t
∞ dt ′ R0(x − x ′, t − t ′)[−γ 2µα

a
cos(γ h̄)1h(0)] and equation (35),

we obtain:

〈ϒ(2)(x, t)〉 = −γ
5µ2α2

a2

∫ ∞
−∞

dx ′
∫ t

−∞
dt ′ R0(x − x ′, t − t ′) cos[γ h̄(x ′, t ′)]

× sin[γ h̄(x, t)]〈1h(0)(x ′, t ′)1h(0)(x, t)〉 (38)

where〈1h(0)(x ′, t ′)1h(0)(x, t)〉 = ε
π

cos(3|x−x ′|)e−µ3|t−t ′|. The product of sine and cosine
terms can be decomposed as the sum of sin{γ [h̄(x, t) + h̄(x ′, t ′)]} and sin{γ [h̄(x, t) −
h̄(x ′, t ′)]}. The former term can be neglected since it contains higher harmonics and is
therefore irrelevant on the long wavelength scale. The latter term will renormalize the
mobility µ seen from the expansion of equation (38):

γ

[
ρ2

4
∇2h̄+ τ ∂h̄

∂t

]
〈cos{γ [(h̄(x ′, t ′)− h̄(x, t)]}〉 (39)

where the gradient term will not renormalize the elastic term in equation (8), which is
proportional to the absolute value of momentum. The non-renormalization ofK is also
justified in the present scheme. The cosine term in equation (39) is due to higher-order
corrections. This cosine term will result in e−γ

2S(ρ,τ ), whereS(ρ, τ ) = 〈[h̄(x + ρ, t + τ)−
h̄(x, t)]2〉 = 2

π

∫ 3
0

dk
k

[1− cos(k3)e−µkτ ].
The recursion relation of the mobility will be

dµ

dl
= 2γ 6

π2a2
BV 2µ (40)

whereV = α
3

, B = ∫∞
0

∫∞
0 dx dy xy2

y2+1 cos(x)e−γ
2S(x,y)e−xy with the change of variables

x = 3ρ, y = µτ/ρ, andS(x, y) = 2
π

∫ 1
0

dk
k
(1− cos(kx)e−xy).

The prediction of the critical dynamics behaviours can be obtained by following the
same approach that we pursued in section 4. As shown in equation (40), the coefficient
precedingV 2 is different from that in equation (26), indicative of the non-universality of
mobility expression. Two schemes give different coefficients, as occurs in the 2D sine-
Gordon theory [8, 15]. Nevertheless, the critical behaviours predicted by two schemes are
qualitatively the same. NG used the momentum shell of the noise, while AGG integrated
out the noise to obtain the generating functional and imposed cut-offs on the field variables.

In the AGG scheme the theory is expanded around the transition point, while in the NG
scheme this expansion is not necessary. The latter is supposed to still hold in the region far
away (but not very far) from the transition temperature. The critical behaviour predicted
by the two schemes are qualitatively consistent. The difference in physical properties
of parameters predicted from two schemes can be seen by integrating the corresponding
recursion relations.

However, the AGG scheme provides an obviously consistent field-theoretic approach,
which will require less effort to extend the calculation to higher order inα.
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6. Conclusion

We summarize the main conclusion of our investigation of the equilibrium dynamics of a
1D crystalline surface with a long-range interaction. There exists a phase transition between
a rough phase at high temperature, and a flat phase at low temperature. In the rough phase,
the correlations and response function possess the same scaling behaviour as in the free
case (with the periodic potential). The periodic potential is irrelevant in this phase. As
the transition temperatureTc approaches from above, the macroscopic mobility vanishes
continuously (in contrast to the 2D roughening transition where it has a finite jump). This
particular behaviour is due to the long-range interaction, which not only leads the system
to a roughening transition in one dimension and but also forbids the renormalization ofK

from a periodic potential. This implies that the surface is stiffer than that with short-range
interactions.

The properties of the low-temperature phase are qualitatively similar to those found in
2D roughening transitions. The height–height correlations have a short-range correlation
length elD . In other words, a mass term is generated in this strong coupling region. Near
the transition point, the linear mobility characterized by the ratio of the driving force and
the velocity of a moving surface vanishes.

We also adopt the NG scheme to calculate the RG recursion relations. In both AGG
and NG schemes one obtains the same roughening temperature. The AGG approach can
provide more accurate predictions than the AGG approach in the lower-temperature region
far below the transition. However, in the case with larger coupling constantsα the AGG
scheme provides easier extensions to higher-order perturbative calculations thus one can
obtain more accurate results near the transition temperature.

Acknowledgments

The author is grateful to T Hwa for intense discussion and insightful suggestions. He would
also like to thank C-N Chen and Y Shapir for useful discussions. The work was partially
supported by the National Science Council of Taiwan under grant nos NSC 84-2112-M-
001-013 Y and NSC 84-2112-M-001-048.

Appendix A. Analytic properties of C0(x, t)

We have defined the regularization forC0(x, t) in equation (15). A further simplification
can be obtained by reparametrization.

C0(x, t) = 1

2

∫ ∞
−∞

dp

|p| +M e−µ(|p|+M)|t |eipy

∣∣∣∣
y2=x2+a2

= 2

2π

∫ ∞
0

dp

p +M e−µ(p+M)|t | cos(ipy)

= 1

π

∫ ∞
0

∫ ∞
0

dp dα e−α(p+M)e−µ(p+M)|t | cos(ipy)

= 1

π

∫ ∞
µ|t |

du e−Mu
u

u2+ y2

= 1

π

∫ ∞
0

du e−Mu
u

u2+ y2
− 1

π

∫ 0

µ|t |
du e−Mu

u

u2+ y2
(A1)
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where the first term of the last line in equation (A1), can be written as:
− 1
π

[Ci(yM) cos(yM) + Si(yM) sin(yM)]. Around x = 0, Ci(x) = C + log(x) +∑∞
k=1(−1)k x2k

2k(2k!) , and Si(x) = −π
2 +

∑∞
k=1(−1)k+1 x2k−1

(2k−1)(2k−1!) . HereC is the Euler’s
constant.

In the limit of Mµt � 1, the second term of the last line in equation (A1) can be
approximated by:

− 1

π

∫ µ|t |

0
du e−Mu

u

u2+ y2
(A2)

∼ − 1

π

∫ µ|t |

0
du

u

u2+ y2
(A3)

= − 1

2π
log

[
(µ|t |)2+ y2

y2

]
+O(µt). (A4)

Appendix B. The vertex functions

The bare and renormalized vertex functions [16, 21] can be related by factors ofZh, Zh̃.
For instance,

0rN,L(q, ω; νr ,Mr, κ) = (Zh) L2 (Zh̃)
N
2 0N,L(q, ω; ν0,M0, a) (B1)

whereνr andν0 label renormalized parameters (αr, µ, . . .) and bare parameters (α,µ0, . . .),
respectively. q and ω are the external momentum and frequency, respectively. In the
corresponding vertex function,a is a short-distance cut-off, andκ is a mass scale.0N,L
stands for the vertex function withL externalh lines andN externalh̃ lines. The factors,
Zh andZh̃, are set to remove the divergent parts of the vertex function0.

The generating functional of the vertex functions can be expressed in orders of the
perturbation parameters. The expressions are referred to elsewhere [14, 15, 23].

Appendix C. The calculation ofZα

The generating functional of vertex functionsP [M, M̃] is expanded as:P [M, M̃] =
〈V [h+M, h̃+ M̃]〉 +O(α2), whereV [h, h̃] = − γµα

a

∫∫
dx dt h̃(x, t) sinγ h(x, t).

The Wick contraction ofV [h, h̃] in the leading order is: 〈V [h + M, h̃ + M̃]〉 =
V [M, M̃]〈cos[γ h(x, t)− γ h(x ′, t ′]〉 = V Ja, where

J = 1

a
exp[−C0(x = 0, t = 0)] = (sM)(sMa)−( γ

2

π
−1) (C1)

with s = eC and we have used the singular behaviour ofC0(0, 0) as implied by
equation (A1).

With g = Zggr we haveZg = (κa)1− γ2

π .

Appendix D. The calculation of vertex function Γ1,1(q,ω)

The expression for the vertex function01,1(q,w) can be obtained in the same way as in
the 2D case [14, 15]. We expand it up to the second order ofα,

01,1(q, ω) = −iω + µ(|q| +M)+ αµJ + µ(αJ )2
[ ∫ ∞
−∞

dx {P(x, 0)− e−iqxQ(x, 0)
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−iω
∫ ∞

0
dx
∫ ∞

0
dt e−i(qx−ωt)Q(x, t)

]
(D1)

whereP(x, t) = cosh{γ 2C0(x, t)} − 1, andQ(x, t) = sinh{γ 2C0(x, t)} − γ 2C0(x, t).
To obtain the information of the dynamics, we only need to extract the divergence of

the term containingQ(x, t) by using0r1,1 = Z̃01,1.
For the time being, we neglect the prefactor. The singular term from the last term in

equation (D1) can be obtained as:

−iω
∫ ∞

0
dt
∫ ∞
−∞

dx
1

2

[
e−

γ2

2π log[s2(x2+a2)M2]e
− γ2

2π log( µ
2t2+y2

y2 )

]
= − iω

∫ ∞
0

dt
∫ ∞
−∞

dx
1

2

[
1

M2s2(x2+ a2)
e
− log( µ

2t2+y2

y2 )

]
= − iω

∫ ∞
0

dt
∫ ∞
−∞

dx
1

2

[
1

M2s2(x2+ a2)

y2

y2+ µ2t2

]
∼ − iω

∫ ∞
0

ds̃

µ

√
x2+ a2

1

2

∫ (sM)−1

−(sM)−1
dx

1

(sM)2
√
x2+ a2

1

s̃2+ 1

= − iω
1

2µ

∫ ∞
0

ds̃

s̃2+ 1

[
2
∫ (sM)−1

0
dy

1

(sM)2

1√
x2+ a2

]
= − iω

1

2µ

∫ ∞
0

ds̃

s̃2+ 1
2×

[
− 1

(sM)2
log(sMa)

]
where we have substituted̃s = µt√

x2+a2 .

With the prefactor,Z̃ = 1+ 2πα2
r b ln(κa), whereb = ∫∞0 ds̃ 1

s̃2+1 = π
2 .
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